Using the power of proteomics to predict immunotherapy responses in melanoma and beyond

Next-generation proteomics has a vital role to play in the search for new biomarkers of immunotherapy…

Trees get overheated in a warmer rainforest

The ability of rainforests to store carbon can decrease in pace with climate change. This is…

Being lonely and unhappy accelerates aging more than smoking

Molecular damage accumulates and contributes to the development of aging-related frailty and serious diseases. In some…

Interconnected and high cycling stablility polypyrrole supercapacitors using cellulose nanocrystals and commonly used inorganic salts as dopants

Polypyrrole (PPy) is widely used as an electrode material in supercapacitors (SCs) due to its high…

Industrial microorganism uptakes sugars differently

With the help of genetic manipulation and advanced biophysical tools, an international research team has gained…

Emergence of a game changer in the field of medical microrobots.

□ Daegu Gyeongbuk Institute of Science & Technology (DGIST, President Yang Kook) Professor Hongsoo Choi’s team of the Department of Robotics and Mechatronics Engineering collaborated with Professor Sung-Won Kim’s team at Seoul St. Mary’s Hospital, Catholic University of Korea, and Professor Bradley J. Nelson’s team at ETH Zurich to develop a technology that produces more than 100 microrobots per minute that can be disintegrated in the body.  Credit: . □ Daegu Gyeongbuk Institute of Science & Technology (DGIST, President Yang Kook) Professor Hongsoo Choi’s team of the Department of Robotics and Mechatronics Engineering collaborated with Professor Sung-Won Kim’s team at Seoul St. Mary’s Hospital, Catholic University of Korea, and Professor Bradley J. Nelson’s team at ETH Zurich to develop a technology that produces more than 100 microrobots per minute that can be disintegrated in the body.    □ Microrobots aiming at minimal invasive[1] targeted precision therapy can be manufactured in various ways. Among them, ultra-fine 3D printing technology called two-photon polymerization method, a method that triggers polymerization by intersecting two lasers in synthetic resin, is the most used. This technology can produce a structure with nanometer-level precision. However, a disadvantage exists in that producing one microrobot is time consuming because voxels, the pixels realized by 3D printing, must be cured successively. In addition, the magnetic nanoparticles contained in the robot can block the light path during the two-photon polymerization process.  This process result may not be uniform when using magnetic nanoparticles with high concentration.    □ To overcome the limitations of the existing microrobot manufacturing method, DGIST Professor Hongsoo Choi’s research team developed a method to create microrobots at a high speed of 100 per minute by flowing a mixture of magnetic nanoparticles and gelatin methacrylate, which is biodegradable and can be cured by light, into the microfluidic chip. This is more than 10,000 times faster than using the existing two-photon polymerization method to manufacture microrobots.    □ Then, the microrobot produced with this technology was cultured with human nasal turbinated stem cells collected from human nose to induce stem cell adherence to the surface of the microrobot. Through this process, a stem cell carrying microrobot, including magnetic nanoparticles inside and stem cells attached to the exterior surface, was fabricated. The robot moves as the magnetic nanoparticles inside the robot respond to an external magnetic field and can be moved to a desired position.    □ Selective cell delivery was difficult in the case of the existing stem cell therapy. However, the stem cell carrying microrobot can move to a desired location by controlling the magnetic field generated from the electromagnetic field control system in real time. The research team conducted an experiment to examine whether the stem cell carrying microrobot could reach the target point by passing through a maze-shaped microchannel, and consequently confirmed that the robot could move to the desired location.    □ In addition, the degradability of the microrobot was evaluated by incubating the stem cell carrying microrobot with degrading enzyme. After 6 h of incubation, the microrobot was completely disintegrated, and the magnetic nanoparticles inside the robot were collected by the magnetic field generated from the magnetic field control system. Stem cells were proliferated at the location where the microrobot was disintegrated. Subsequently, the stem cells were induced to differentiate into nerve cells to confirm normal differentiation; the stem cells were differentiated into nerve cells after approximately 21 days. This experiment verified that delivering stem cells to a desired location using a microrobot was possible and that the delivered stem cells could serve as a targeted precision therapeutic agent by exhibiting proliferation and differentiation.     □ Furthermore, the research team confirmed whether the stem cells delivered by the microrobot exhibited normal electrical and physiological characteristics. The final goal of this study is to ensure that the stem cells delivered by the robot normally perform their bridge role in a state where the connection between the existing nerve cells is disconnected. To confirm this, hippocampal neurons extracted from rat embryo that stably emit electrical signals were utilized. The corresponding cell was attached to the surface of the microrobot, cultured on a micro-sized electrode chip, and electrical signals were observed from the hippocampal neurons after 28 days. Through this, the microrobot was verified to properly perform its role as a cell delivery platform.…

Professor Jong-Sung Yu’s research team at DGIST discovered a turning point in the lithium-sulfur battery field, enabling the development of new next-generation battery technologies with high energy and long lifespan.

□ Professor Jong-Sung Yu’s research group in the Department of Energy Science and Engineering at DGIST (President:[A1] Young Kuk) developed a technology for a porous silica[1][A2] interlayer by loading sulfur, an active material,[2] in silica. This new approach is expected to be pivotal to the R&D and commercialization of next-generation lithium-sulfur batteries, in which energy density and stability are essential. Credit: . □ Professor Jong-Sung Yu’s research group in the Department of Energy Science and Engineering at DGIST (President:[A1] Young Kuk) developed a technology for a porous silica[1][A2] interlayer by loading sulfur, an active material,[2] in silica. This new approach is expected to be pivotal to the R&D and commercialization of next-generation lithium-sulfur batteries, in which energy density and stability are essential.   □ With the recent increase in demand for large-capacity energy-storage devices, research on high-energy, low-cost, next-generation secondary batteries that can replace lithium-ion batteries has been actively conducted. Lithium-sulfur batteries, which use sulfur as a cathode material, have an energy density several times higher than that of conventional lithium-ion batteries, which use expensive rare-earth elements as a cathode material. Therefore, it is expected that the sulfur-based battery will be more suitable for high-energy devices such as electric vehicles and drones. In addition, research on lithium-sulfur batteries is widespread because sulfur is inexpensive, abundant, and non-toxic.   □ On the other hand, sulfur, an active element that produces electrical energy, has low conductivity, and polysulfide[3] generated during charging and discharging of the battery diffuses toward the negative electrode of the battery, resulting in the loss of sulfur through its reaction with lithium. Accordingly, the capacity and lifespan of the battery significantly deteriorate. This issue has been ameliorated by inserting a new layer between the sulfur electrode and separator (middle) that can absorb polysulfide and block diffusion.[A3][A4][A5]   □ Conductive carbon, which is currently used as an interlayer technology to improve the capacity and lifespan of lithium-sulfur batteries, imparts conductivity to the sulfur electrode. [A6][A7][A8]However, the diffusion of sulfur cannot be prevented because its affinity with the polar lithium polysulfide is low. On the other hand, if a polar oxide is used as an intermediate layer material, the loss of sulfur is suppressed owing to its strong interaction with lithium polysulfide. However, the utilization of sulfur is lower owing to its low conductivity. In addition, the various interlayer materials studied previously are not ideal because they cannot achieve the energy density and cycle life required for commercialization owing to their thickness and low redox activity. [A9][A10]   □ To address these disadvantages, the research team first implemented a new redox-active porous silica/sulfur interlayer by adding sulfur in the silica after synthesizing the plate-shaped porous silica. They predicted that the capacity and lifetime efficiency of the lithium-sulfur batteries would be maximized owing to the sulfur-induced increase in the capacity per cell area, because additional sulfur was loaded in the intermediate layer, which could also act as an effective lithium polysulfide adsorption site.[A11]   □ To investigate this theory, the silica/sulfur interlayer was applied to a lithium-sulfur battery, which was then charged and discharged 700 times. As a result, the porous silica/sulfur interlayer achieved a much higher long-term stability than the conventional porous carbon/sulfur interlayer after 700 charge/discharge cycles. In particular, the battery exhibited high capacity and durable, long-lasting properties, even at a high sulfur content of 10 mg/cm2 and a low electrolyte:sulfur (E/S) concentration of 4. Therefore, it is near-ready for practical application.    □ Professor Jong-Sung Yu [A12]stated, “Our study is the first [A13]to find that sulfur can be loaded into the pores of a porous silica material to serve as an intermediate layer material for lithium-sulfur batteries, improving their capacity and lifespan.” He added, “This result is a new milestone in the development of next-generation high-energy, long-life lithium-sulfur batteries.” …

Enemy turned ally: Ancient viral genes protect the brain against new infections

From the common cold to COVID-19, viruses have a massive impact on our day-to-day lives, but…

Differences in fungus found in reared and wild ambrosia beetles suggest artificial method to prevent wilt disease in trees

A recent study in Japan has found that reared ambrosia beetles, Euwallacea interjectus, can have symbiotic…

Continued access to fertility preservation critical for adolescent and young adult cancer patients, following SCOTUS decision

ATLANTA, September 26, 2022 — The Supreme Court of the United States (SCOTUS) ruling in Dobbs…

Finding the ship that sent out a warning to The Titanic

The ship which sent an iceberg warning to the RMS Titanic, before the ocean-liner sank, has…

Magnetic field helps thick battery electrodes tackle electric vehicle challenges

As electric vehicles grow in popularity, the spotlight shines more brightly on some of their remaining…

Split Prime Editing Systems Broaden Research and Therapeutic Uses

Prime editing uses CRISPR-guided reverse transcription to enable the programmable introduction of any desired base substitution…

Game-changing new theory upends what we know about how charged macromolecules self-assemble

AMHERST, Mass. – In a discovery with wide-ranging implications, researchers at the University of Massachusetts Amherst…

UTA electrical engineer earns Department of Energy Early Career Research grant

Chenyun Pan, an assistant professor of electrical engineering at The University of Texas at Arlington, has…

High R&D isn’t necessarily why drugs are so expensive

In the first known study of its type, an international team of researchers evaluated whether high…

In pursuit of better batteries

From personal electronics to electric vehicles, lithium-ion batteries are used in many technologies today. Over the…

Orphazyme reports financial results in Interim Report First Half 2022

Company announcementOrphazyme A/SNo. 36/2022 www.orphazyme.comCompany Registration No. 32266355 The post Orphazyme reports financial results in Interim…

Prime Medicines Files for IPO, Revealing 18-Program Pipeline and First Patent

David R. Liu, PhD, Prime Medicine co-founder Prime Medicine which applies a “search and replace” approach…

Heat-related mortality risk is widespread across Washington state, study shows

Heat-related deaths are an issue across Washington state, and they occur even in regions that typically…

SIGA Announces Approximately $16 Million of International Procurement Orders Received in August and Early September for Oral TPOXX(R) (Tecovirimat)

– Order for Approximately $10 Million Funded by the European Commission – The post SIGA Announces…

Acticor Biotech enrolls First U.S. patient in study for people with acute ischemic stroke

The first U.S. patient was enrolled in a study evaluating glenzocimab in those with acute ischemic…

BlueSphere Bio Presents Data Demonstrating Efficiency of Parallel TCR Capture and Bioinformatics Platforms at 7th Annual CAR-TCR Summit

Parallel processing using TCXpress(TM) and iTCXpress(TM) platforms significantly increases throughput, reduces the cost and shortens the…

Low-carb vegan diet shows similar health benefits to vegetarian diet, study shows

A low-carb vegan diet has the same health effects as a vegetarian diet, but at a…

Machine learning multi-city model: Prediction of municipal solid waste generation

Ever increasing solid waste production has been threatening natural environment and human safety in recent years.…

Sorrento Therapeutics Completes Enrollment of Phase 2 Clinical Trial of Resiniferatoxin (RTX) for Treatment of Knee Pain in Moderate to Severe Osteoarthritis of the Knee (OAK) Patients

SAN DIEGO, Sept. 26, 2022 (GLOBE NEWSWIRE) — Sorrento Therapeutics, Inc. (Nasdaq: SRNE, “Sorrento”) announced today…

New study allows scientists to test therapeutics for rare disease affecting young children

MADISON — For the first time, scientists will be able to test therapeutics for a group…

Breakthrough brings potential glioblastoma drug into focus

Glioblastoma, the most common cancerous brain tumor in adults, is an aggressive disease—patients survive an average…

New study shows transmission of epigenetic memory across multiple generations

Without altering the genetic code in the DNA, epigenetic modifications can change how genes are expressed,…

TILT and MSD working on immunotherapy trial for non-small cell lung cancer

TILT Biotherapeutics, a clinical-stage biotechnology company developing cancer immunotherapies, has signed a second clinical trial collaboration…